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ABSTRACT

We consider a compressible, inviscid, stratified parallel shear flow, bounded below by a rigid wall and
above by a half-space of constant wind speed and temperature. Linear stability analysis shows that this
flow is unstable to a family of modes, one of which is the well-known Kelvin-Helmholtz disturbance. The
remaining modes, here called resonant modes, undergo little attention in the region below the shear layer,
and their parameters and structure are strongly influenced by the presence of the ground.

The stability curves for both types of modes are investigated as functions of the parameters of the back-
ground state. For most combinations of parameters, the resonant modes are trapped between their critical
level and the ground. However, for nearly isentropic shear layers, the neutral resonant modes become
free to propagate in the upper half-space. Under such conditions, the growing solutions are no longer con-
tiguous to the neutral curves. The growth rates of the Kelvin-Helmholtz modes are found to be larger
than those of the resonant modes for all combinations of the background parameters. The evolution of
instabilities in a real shear layer is discussed in the light of this result. The eigenfunction structure of the
resonant modes suggests an explanation for the multiple thin scattering layers often recorded by radars
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observing the stable boundary layer.

1. Introduction

There is a long history of investigations into the
stability of a parallel shear flow. The study began with
Helmholtz, who determined the stability criterion for
an unbounded atmosphere with step discontinuities in
wind speed and density. Kelvin was able to show that
the resulting nonlinear disturbance developed a braided,
or cat’s-eye, pattern. Subsequent analyses dealt with
continuous wind speed and density profiles (Drazin,
1958; Hazel, 1972) and more realistic boundary condi-
tions (Jones, 1968). But in all of these models certain
features of the fastest growing instability were common :
a phase speed equal to the speed of the background
wind at the center of the shear layer, a horizontal wave-
length proportional to the depth of the shear layer,
and an amplitude which decayed rapidly away from
the region of shear. In this paper, any mode of insta-
bility displaying these characteristics will be called a
Kevin-Helmholtz, or K-H instability, although this
term has often been reserved for the discontinuous
velocity profile case.

The XK-H disturbance is able to smooth the original
shear layer by extracting energy from the mean flow,
ampliflying in time locally, and breaking to dissipate
the energy in turbulence. However, if the stratification
remains stable away from the shear zone, the possi-
bility exists that the shear energy can be used instead
to generate an internal wave, which deposits the energy

at great distances from the shear layer at the time of its
re-absorption by the mean flow. Lindzen (1974) has
examined the stability of a discontinuous velocity
profile in an unbounded, isothermal atmosphere and
found that although short-wavelength perturbations
had the characteristics of K-H disturbances, long-wave-
length perturbations manifested themselves as neutral
internal gravity waves. The same behavior was indi-
cated in the work of Jones (1968) for a piecewise linear
velocity profile in an unbounded, isothermal atmo-
sphere. In addition, recent analyses have shown that
instabilities in Ekman layer flows (Kaylor and Faller,
1972), in stable boundary layers subject to diurnal
variations in stability (Orlanski, 1973), and in large-
scale barotropic shear flows (Dickinson and Clare,
1973) can all be interpreted as resonances with internal
waves.

The ubiquitous presence of K-H disturbances: of
various scales in the stable boundary layer (Emmanual
et al., 1972; Browning e al., 1973) implies that unstable
parallel shear flows are common here. If such flows are
also capable of internal wave generation, they could
account for some of the many wave events observed in
the boundary layer (Gossard et al., 1970; Metcali,
1975). In particular, the thin, wavy, coherent multiple
layers, regularly spaced in the vertical, that are com-
monly observed by acoustic and FM-CW radars,
suggest an explanation in terms of linear theory. A
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F1c. 1. Acoustic sounder record for 3 July 1974 at Toronto.
Between 1800 and 1900 EST, three wavy, coherent scattering
layers, periodically spaced in the vertical, are found below 400 m.,
The layers are actually considerably thinner than they appear to
be on the record since the vertical resolution of the sounder is
about 20 m.

typical example of a multiple layer event is shown in
Fig. 1, recorded with the acoustic sounder operating in
urban Toronto, and described by Bennett (1975).
Gossard ef al. (1971) have given an explanation of such
layers in terms of untrapped gravity waves propagating
nearly vertically as they enter a region of strong static
stability. Such an explanation is somewhat artificial in
that it makes use of waves generated far from the
regions of the multiple layers themselves. In addition,
since no temperature or wind profiles are available for
periods during which the multiple layers have been
observed, it is not obvious that the conditions required
for the achievement and maintenance of the vertical
propagation of these waves are present.

The aim or the present paper is to analyze the com-
plete stability problem of a stratified parallel shear flow
in a boundary layer setting. We will show that such
a flow is unstable to disturbances with the character of
internal gravity waves and that these disturbances
could be responsible for the formation of the observed
thin multiple layers.

2, Theory
a. Review of previous results

Summarized below are some pertinent theorems on
the nature of the instabilities of a general parallel shear
flow in an atmosphere that is stratified, inviscid, in-
compressible and unbounded.

I. A necessary, though not sufficient, condition for
instability is that the Richardson number Ri drop below
0.25 somewhere in the flow (Miles, 1961 ; Howard, 1961).
The Richardson number is a measure of the relative
importance of the stabilizing influence of the stratifica-
tion to destabilizing inertial effects, and is defined by
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where V is the speed of the flow, 6 the potential tem-
perature, g the gravitational acceleration and N the
Brunt-Viisild frequency.

II. The complex phase speed ¢ of any unstable mode
must lie within the semi-circle in the upper ¢ plane
which has the given range of background wind speeds
for diameter (Howard, 1961). This theorem implies
that the real phase speed of an unstable mode must
match the speed of the background wind somewhere
in the flow. At such a level, called the critical level,
the Doppler-shifted frequency of the perturbation be-
comes zero.

ITI. The growth rate of any unstable mode must be
less ‘than a value which depends upon the parameters
of the background flow (Howard, 1961).

IV. Unstable perturbations must be bounded by a
neutral curve composed of singular neutral modes
(Miles, 1961). A neutral mode is a solution to the
stability equation which neither grows nor decays in
time. The term “singular’ refers to a mode which has
a critical level somewhere in the flow.

V. The existence of a neutral curve implies the ex-
istence of at least one contiguous growing solution in
the Richardson number-wavenumber plane (Miles,

1963).

Theorems I and IIT have been extended to compres-
sible flows with a single rigid boundary by Chimonas
(1970). Theorem II has been extended to compressible
flows by Eckert (1963), who was able to place more
restrictive but less specific limitations on c.

b. The model atmosphere

Since we wish to look for wavelike instabilities in a
boundary layer setting, the atmospheric model we
assume is bounded below by a rigid wall and above by
a radiation condition. Although the model is capable of
simulating the wide variety of wind and temperature
profiles observed in the boundary layer, in this paper
we shall discuss only hyperbolic tangent profiles in
order to make the presentation more systematic. The
profiles used in the model have the form

U= U0{1+rtanh{:(z—z,~)/h]}, 1)
T="To+aof tanh[ (z—2.)/(Bh)]. (2

Here z; is the height above the ground of the inflection
points in both profiles, and % is a measure of the depth
over which the wind and temperature gradients are
large. For comparison with other models the depth of
the shear layer will be taken as Az=2k. In Eq. (2) ais
a measure of the change in temperature across the in-
version, and can be either positive or negative, while 8
is essentially the ratio of the distance over which the
temperaturé gradients are large to the distance over
which the shear is large. A value of 8>1 implies a
narrow shear zone embedded in a broad temperature
inversion, while 8<1 implies a broad shear zone con-
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taining a narrow inversion. The values of U, and T
were fixed at 2.4 m s™! and 271 K, respectively. Asymp-
totic values of U above and below the shear layer re-
spectively are 2U, and 0, and with To+af and To—af
the corresponding temperatures.

Because U and T vary continuously with height,
there is no Richardson number that is applicable to
the entire flow. The value to be used in the following
discussions will be the Richardson number at the in-
flection point height, i.e.,

g @/t

Ty (Uo/hy’

where T' is the negative of the adiabatic lapse rate.
Note that R varies with @ and %, but is independent of 8.

The model atmosphere is assumed to be non-
rotating, inviscid and non-heat-conducting. The first
of these simplifications means that we are restricting
our attention to the acoustic-gravity wave régime.
The effects of viscosity and thermal interchange on the
linear results will be discussed in Section 4.

The model was allowed to be compressible, and in
this respect it differs from almost all other models in the
literature. The effects of compressibility are expected
to be small, but perhaps significant when dealing with
the short length and time scales for shear layers located
very close to the ground. In addition, we wish to apply
our results to actual observations, and interpretations,
particularly in terms of the Brunt-Viisild frequency,
would be inconvenient if an incompressible framework
were adopted. Finally, the effects of compressibility
determine the exact frequency at which the character
of the instability changes from evanescent to propa-
gating in the isothermal, constant wind layers above
and below the shear zone (Jones, 1968).

Since we are dealing with a parallel flow, we choose
the x axis of our coordinate system to lie along the
direction of flow. The z axis is directed anti-parallel to
g, with origin at the rigid lower boundary.

¢. Derivation of the stability equation

The equations of motion, continuity and adiabatic
state for the model atmosphere described above are,
respectively,

DU*  wp*
+—+g=0, (3)
Dt p*
Dp*
— v U*=0, @
Dt
D * & D *
? _ﬁ_ i 0, (5)
Dt p* Dt

where U*= (u*, »*) is the total wind vector, p* and p*

A. DAVIS AND W. R. PELTIER

1289

are the total pressure and density, and v is the ratio of
specific heats. D/Dt is the substantive derivative

D/Dt=9/0t+U*-v.

We wish to examine the response of this system to
a general perturbation, or equivalently, the response
to each Fourier component of a general perturbation
in turn. Each total variable is therefore understood to
consist of a mean (capitalized) and perturbation
(primed) part. The mean variables will be functions of
2z only, according to our model of the mean state. The
perturbations may be considered two-dimensional on
the basis of Yih’s (1955) remark that three-dimensional
disturbances of the same wavelength are generally
more stable. The perturbation will then have the form
of a wave periodic in the x direction. For example,

w'(x, 2, £) =w(z) exp[i(wt—Fkx)], (6)

where % is the horizontal wavenumber of the perturba-
tion and is assumed real, so that the wave propagates
freely in the horizontal; w=w,+iw; is the disturbance
frequency, and is assumed to be complex in order to
admit perturbations, with negative w; and w, positive,
that will grow in time ; and w(z) is the height-dependent
part of w’(x, z, £), and is to be determined.

We proceed by substituting these expressions for
the total variables into Eqgs. (3)-(5) and linearizing the
resulting set by neglecting terms of order greater than
1 in perturbation quantities. This linearized set can be
reduced to a single equation in any one of the perturba-
tion quantities. We choose to work with the perturba-
tion vertical velocity for ease in applying the boundary
conditions. We obtain (Chimonas, 1970)

!

[;:%]/+7(N2—62)9=0, ™

=@ eXP(—g / z C‘2(y)dy)

(24

where

e exp26 [ C20005)

Eq. (7) is the required stability equation: a prime here
indicates differentiation with respect to z; s=w—~kU is
the Doppler-shifted frequency of the perturbation;
po(2) is the background density distribution; and
C?=+gH is the square of the background speed of
sound, where H is the atmospheric scale height.

Eq. (7) is subject to the boundary conditions (i) w=0
at the ground, and (ii) the vertical energy flux above
the shear layer must be outgoing, and the energy
density at infinity bounded. The first condition is
easily accommodated, but the second requires careful
consideration. High above the shear layer the wind
speed and temperature given by (1) and (2) are
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essentially constant, and (7) reduces to

, W [or Kuwp? )
W' ——+ —+ —k? Jw=0, ®)
H c? g2

where w,2= (y—1)g?/C? is the Brunt-Viisili frequency
for an isothermal atmosphere. The transformation
w=g¢e*">H puts (8) into canonical form

o2 klw,? we?
¢”+( + —k? )¢=0,

c g? C?
or
¢"'+P=0
since we recognize
. o kw? wa?
pel g g ©)
g c?

as the dispersion equation for acoustic gravity waves in
an isothermal, constant wind atmosphere (Hines,
1960). The parameter / is simply the vertical wave-
number of the wave under such circumstances, and
wa=7g/(2C) is the acoustic cutoff frequency. There-
fore, the solution to (7) in the upper half-space is
proportional to .
(10)

This equation in fact represents two solutions de-
pending upon the sign of /,; this sign must be chosen so
that (10) represents a wave with upward energy flux.
Now in. an isothermal atmosphere at rest, upward
. energy propagation in a gravity wave implies the down-
ward propagation of phase (Hines, 1960). But if at some

= g2/2H g—ilz = p(Li+}H) zg—ilrz,

level a background wind U, exists, and is greater than

the horizontal phase speed w,/k of the wave, upward
energy propagation will imply upward propagation
of phase to an observer fixed on the ground. But this
must always be the case for unstable modes if U, is
taken to be the wind speed in the upper half-space,
since Up>w,/k is just Miles’ (1961) condition that
there exist a critical level for all unstable modes some-
where in the flow. Thus, /, in (10) must always be
positive. In addition, /; must always be negative in
order that the energy density of the perturbation at
infinity be finite.

If the shear layer with its associated inversion is thin
and located far from the wall, there will exist an iso-
thermal, wind-free layer between the bottom of the
shear zone and the ground. In this layer the solutions
to (7) will again be of the form of (10), but now both
upgoing and downgoing waves must be allowed.

We note for future reference that the real and im-
aginary parts of (9) are

12—12=k{wi (o2 —0?)/ (020 —1]

+(0'r2_0'i2—waz)/czy (11)

1 .
ldi=0,.0 i[__kzwaz/ (o240 ‘.z)z:l. (12)
C
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d. Method of solution for growing modes

The stability equation (7) and the two boundary
conditions form an eigenvalue problem, in that
solutions exist only for certain values of the wave
parameters w,, w; and k. These eigenvalues were deter-
mined in the following way. A particular set of wave
parameters was chosen, essentially arbitrarily, al-
though the choice was restricted somewhat by theorems
IT and IIT above, and by the desire for physically
realistic solutions. The corresponding values of w, and
w; in the upper half-space were calculated from (10),
(11) and (12), and (7) was then integrated to the
ground using a standard fourth-order Runge-Kutta
routine. A table of solutions was built up by repeated
application of this procedure. Interpolation in . this
table revealed which combinations of w,, w; and &, if
any, led to simultaneous zero values of both w, and
w; at the ground. Such combinations determine an
eigenvalue set since these values led to the satisfaction
of the lower boundary condition.

e. Method of solution for neutral modes

A straightforward integration of the stability equa-
tion is not possible in the case of neutral modes, since
at the critical level for such modes the term (o,2+0:%)
must be zero, and some of the coefficients in (7) be-
come infinite. It is possible to avoid this difficulty by
using the method of Frobenius to construct an analytic
solution to (7) in the vicinity of the critical level.

The analysis follows closely the work of Miles (1961)
and Booker and Bretherton (1967). We assume that
the solution to the stability equation is expressible in
series form

w=3 a;(z—2,~ic;/US )" =2 a;jt™+.  (13)
=0 j=0

Here subscript ¢ implies evaluation at the critical level;
¢ is the imaginary phase speed of the perturbation, and
although assumed arbitrarily small, must be carried
through at this point in order to determine the behavior
of £ as the solution crosses the critical level.

Eq. (13) is now substituted into (7) and coefficients
of successive powers of £ collected. The coefficients of
the lowest power in £ lead to the indicial equation

(14)

=34y,

where v= (3 —R,)? and is assumed for the moment to
be real. The equation of the next highest power in
£ gives :

a1 1 ru/ 2
—_— [ (1—-R,)—R/+
Qg 1+2V uc' : ‘YHc

+(—%iv>(1
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Therefore, the Frobenius solution to the stability equa-
tion near the critical level is, to second order,

w=aq (" + AL 8) fan(E+4_6).  (15)

It was found in practice that the second-order terms
were necessary to give solutions to better than 19,

It remains to determine the behavior of £ as the
solution crosses the critical level. Now ¢; is negative
for growing solutions, so

arg(&)=tan~Y{ —c:;/[U. (z—3.)]}

varies from O to 7 as z varies from plus to minus infinity.
Thus, £= | £] above the critical level and £= | £| " below
the critical level.
If it happens that R.>}, the indicial equation
becomes
m=3=+1u,

where u= (R,—1%)? and is real. All of the above theory
continues to hold with » replaced by iu.

The Frobenius solution (15) is applied as follows.
The stability equation (7) is integrated as usual to a
point just above the critical level. The solutions at this
point are used to evaluate the coefficients @y and ao,
in (15). Once these are known, (15) is used to predict
the values of w, and w; just below the critical level,
where the numerical solution is resumed.

Except for these details near the critical level, the
search for eigenvalues corresponding to neutral solu-
tions proceeds in much the same way as the search for
those corresponding to unstable solutions. The process is
simplified a bit by the knowledge that w; is zero for
neutral modes, so that the search for eigenvalues takes
place in a table of solutions which are functions of w,
and % only.

3. Results

The stability of the model will be discussed in terms
of four background parameters: 1) z;/A, the nondimen-
sional distance of the shear layer above the ground;
2) B, the ratio of the scale of temperature variations to
the scale of wind variations; 3) R;, the Richardson
number at the inflection-point height, as a function of
the shear depth %, with « fixed; 4) R,, the Richardson
number at the inflection point height, as a function of
stability «, with % fixed. Only one parameter will be
varied at a time. When %, ¢ and 8 are not varied
explicitly, it is to be understood that they have values
of 20 m, 0.8 K and 1, respectively. These values lead
to profiles of wind speed and temperature that are
commonly observed in the boundary layer (Emmanuel
el al., 1972), and to R=0.125, for which instabilities
are possible.

Analysis has revealed that, depending upon the values
of the background parameters, there may exist three
distinct types of instability, which are distinguished
from one another by their behavior far from the region
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FIG. 2. Frequency (a) and wavenumber (b) of the neutral K-H
mode as a function of z;/k: k=20 m, «=0.8K, g=1.

of shear. These three modes of instability will be dis-
cussed in turn.

a. Kelvin-Helmholtz modes

One member of this set of instabilities can be im-
mediately identified as a K-H disturbance through its
characteristic horizontal phase speed and wavelength,
and its rapid attenuation away from the shear zone.
Fig. 2 illustrates the dependence of the neutral K-H
eigenvalues upon the distance of the shear layer from
the wall. In this diagram, # is fixed while z; is allowed
to vary. Above a certain value of 2;/k, which is approxi-
mately 15 for the lower branch and 5 for the upper, the
effect of the wall is negligible. This is due to the strong
attenuation of these modes as a function of distance
from the critical level. The modes comprising the
upper branch suffer greater attenuation than do the
modes comprising the lower branch, and so begin to
feel the effects of the ground at smaller values of z:/k.
The ultimate effect of the wall is to completely stabilize
the flow, as no instabilities are found for z:/£<<0.9.

Hazel (1972) has shown that a shear flow between two
rigid boundaries is also stabilized when the boundaries
begin to encroach upon the shear. He found that the
stabilization occurred at z;,/2=1.5. The value found in
this study is slightly lower, and reflects the decreased
influence of a single boundary.

Fig. 2b indicates that there are two physical scales
which complete to determine the horizontal wavelength
of the perturbation. Consider the behavior of the lower
branch of this curve. Far from the wall, the scale of the
shear zone Az is the only important scale, and % is
independent of z:;/k. However, as z;/k drops below 15
and the instability begins to feel the ground, the
distance z; of the shear zone from the wall enters as a
second, and larger scale. At first the influence of this
scale is weak, but as z;// decreases the influence of the
wall becomes more pronounced and thé z; scale more
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Fi6. 3. Locus of unstable K-H eigenvalues in (wr, wi, k) para-
meter space at z:;/h=15; X’s mark the location of the two asso-
ciated neutral solutions: A=20m, «=0.8 K, g=1.

important. Thus, although z; decreases as the shear
layer approaches the ground, the new scale causes the
wavelength to increase. This behavior continues until
the ground begins to interfere with the shear layer
itself at about z;/A=2. At this point Az becomes larger
than 2., and further decreases in z;, which is now the
dominant scale, lead to decreases in wavelength.

For any value of z;/% in Fig. 2, the two neutral
solutions are bounds for growing modes. The locus of
unstable eigenvalues in (w,, w;, £) parameter space is
shown in Fig. 3 for z;/k=15. This figure illustrates the
limited range of wavelengths to which the flow is un-
stable. The variation in the growth rate of the fastest
growing modes with z;/% is shown in Fig. 4. The sta-
bilizing influence of the wall is apparent as growth
rates decrease with decreasing z;/k. The growth rate
becomes zero at z;/k=0.9, or at exactly the minimum
distance for which neutral solutions exist.

Far from the wall the fastest growing modes show the
characteristics expected of a K-H instability. The
horizontal phase speed is 2.4 m s™!, exactly the speed of
the background wind at the height of the inflection
point. The horizontal wavelength is 262 m, or 6.55 Az,
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F1c. 4. Growth rate of the fastest growing K-H mode as a function
of z;/h: h=20m, a=0.8K, g=1.
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which is comparable with the values of 4.4 Azand 7.5 Az
suggested by Drazin (1958) and Miles and Howard
(1964), respectively. The growth rate of the disturbance
is about 0.0125 s7!, implying an e-folding time of a
little more than 8 min. The K-H perturbations, there-

" fore, grow quickly enough to become physically

important.

Fig. Sa shows the normalized eigenfunctions of the
fastest growing K-H disturbance for z;/h=30. Here
the eigenfunction is represented by the magnitude |w)] -
of the vertical velocity. perturbation. The amplitude -
of the disturbance both above and below the shear
layer is attenuated by a factor e within 44 m. Since
the vertical wavelength of the disturbance away from
the shear layer is about 12 km, the attenuation is

‘certainly complete long before the disturbance can

undergo a single oscillation.

These characteristics are considerably modified once
the effect of the wall is felt. The phase speed of the
disturbance drops below 2.4 m s™. The horizontal wave-
length increases and then decreases in response to the
introduction of the new length scale 5. The perturbation
is still strongly attenuated above and below the shear
layer, but the presence of the wall induces an asymmetry
in the eigenfunctions (Fig. 5b).

The following calculations involve the-behavior of the
K-H modes with 8, R, and R,. They were made for
2;/h=15, so that the fastest growing modes are essen-
tially unaffected by the presence of the ground.

Fig. 6 shows the variation in the horizontal wave-

T T

(a)

= J
x
N .
I
(_D 4
W
T _ 5 J
s
3 k4 ]
-
I
& IF 8
W
2| kS J
- osf 4
|8 .
o 5 10
NORMALIZED EIGENFUNCTION
1 i
% 5 10

NORMALIZED EIGENFUNCTION

Fic. 5. Normalized eigenfunctions of the-fastest growing K-H
mode at z;/k=30 (a) and z;/k=1 (b). The height of the inflection
point is 0.6 km in (a), and 0.02 km in (b). The critical level occurs
at the height of the minimum in the eigenfunction in each case.
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F16. 6. Horizontal wavelength of the fastest growing K-H mode
as a function of shear depth: z;,/k=15, «=0.8K, g=1.

length  of the fastest growing K-H mode with the shear
depth Az. The relationship is approximately linear,
verifying that Az is indeed the scale which determines
the horizontal wavelength of a K-H instability gen-
erated well above the ground. We find on the average
that

A/ Az~6.55. (16)

This ratio decreases by about 209, as Az increases from
10 to 65 m. The proportionality between the parameters
of the fastest growing mode and the shear depth im-
plies that there is one size of K-H disturbance, mea-
sured relative to the depth of the shear layer, that is
most efficient in smoothing the shear.

The variation of the growth rate of the fastest
growing K-H mode with R, is shown in Fig. 7a. No
instabilities were found beyond R,=0.25, as predicted
by theory. The rapid increase in growth rate for small
Ry is due to the fact that Ry decreases as the shear in-
creases. The condition R, =0 requires an infinite shear,
and an infinitely large growth rate to remove that shear.

Fig. 7b shows the dependence of the K-H growth
rates with R,. Again, no instabilities were found for
R>0.25. Decreasing stability leads to larger growth
rates, as might be expected for disturbances that are
not wavelike. The growth rates as functions of 8 are
shown in Fig. 7c. A wide shear zone containing a sharp,
narrow temperature increase produces a faster growing
disturbance than does a narrow zone of shear embedded
in a broader inversion.

In order to demonstrate the applicability of these
results to real atmospheric phenomena, we will com-
pare them to a wave generation event observed by
Hooke ef al. (1973). The disturbance was recorded on
an acoustic sounder and simultaneously on a micro-
barograph array, during a period when strong shear
coincided with inversion conditions at about 125 m.
The sounder record showed a braided pattern between
80 and 150 m that is typical of a K-H disturbance.
The depth of the shear layer was observed to be about
50 m, so that in our terminology z:/A=5. Fig. 4 shows
that at this height the fastest growing mode is
essentially unaffected by the ground, and should have
a phase speed equal to the background wind speed at
the center of the shear layer. In fact, the observed
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phase speed of the wave was about 3.5 m s, while the
background wind speed increased from 2.5 to 5 m s™!
over the depth of the shear. Fig. 6 indicates that a shear
depth of 50 m corresponds to a horizontal wavelength
of about 310 m. This value and the 3.5 m s™! wind
speed imply a period of 71 s. These results are to be
compared with observed values of 350 m and 100 s for
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Fic. 8. Frequency (a) and horizontal wavenumber (b) of the
first three neutral secondary modes as functions of z;/k. The
lower branch of the K-H neutral curves are shown as dotted
lines. (k=20 m, «a=0.8K, 8=1.)
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F16. 9. Normalized eigenfunctions of the fastest growing secondary modes at z;/k=30.
The first overtone is shown in (a), the second in (b) and the third in (c). The height of the
inflection point is 0.6 km, and the critical level in each case is at the height of the minimum
in the eigenfunction. (k=20 m, a=0.8 K, g=1.)

the wavelength and period, respectively. This is good
agreement considering the fact that the wind speed
and temperature profiles were approximated here by
hyperbolic tangents, and the fact that the wave was
certainly nonlinear in character at the time of observa-
tion. In addition, the amplitude of the pressure fluctua-
tions observed at the ground was much less than that
observed at 150 m. The wave is -therefore strongly
attenuated in the vertical, as predicted by theory.

b. Resonant modes: Trapped modes

A further search for neutral eigenvalues at various
values of z;/h (and for the standard values of the other
parameters) revealed a series of solutions lying below
the K-H neutral curves of Fig. 2. The neutral curves
for the first three of these secondary, or overtone,
modes are shown in Fig. 8. (We shall denote the
secondary mode with the highest frequencies as the
first secondary mode, and so on.) Within each overtone
mode, no instabilities are found below a minimum,
or cutoff, value of z;/k. In addition, for a given value
of z;/k, the two neutral solutions for each overtone are
bounds for growing solutions. These similarities between
the secondary modes and the K-H disturbances suggest
that all the modes are members of a single family.

Fig. 8 shows that the secondary modes have longer
wavelengths and longer periods than the K-H modes.
The phase speeds of the secondary modes are all less
than 2.4 m s7!, so that the critical levels for these
modes are located below the height of the inflection

point in the wind profile. The range of possible unstable

. wavelengths at a given value of z,/k is small.

The nature of these secondary modes is best under-
stood by examining their eigenfunction structure.
Normalized eigenfunctions of the fastest growing modes
of the first three secondary disturbances are shown in
Fig. 9 for 2;,/h=230. (The eigenfunctions show much the
same structure at all values of 2z;/k.) Above the shear
layer the eigenfunction amplitude decays fairly rapidly,
as was the case for the K-H modes, and the structure
at the critical level is similar. Below the shear layer,
however, the secondary mode structure is unique.
The eigenfunction of the first secondary mode shows
a single maximum between the bottom of the shear
zone and the ground. The second and third overtones
show two and three maxima, respectively, in this layer,
and within each mode the amplitudes of the maxima
decrease very little away from the shear zone. This lack
of attenuation implies that the secondary disturbances
can propagate down to the ground, reflect, and return
to the shear layer. In so doing, the upgoing and down-
going waves interfer to produce the standing wave
pattern of Fig. 9.

This picture is reinforced by the calculation of the
vertical wavelengths of the first three secondary modes
in the isothermal, wind-free layer between the bottom
of the shear zone and the ground. These values are
listed in Table 1. The ratio of the isothermal layer
depth (about 560 m) to real vertical wavelength is
very close to 1, 1 and £ for the first, second and third
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TABLE 1. Real and imaginary vertical wavelengths in the
isothermal, wind-free layer between the bottom of the shear zone
and the ground (z;/4=230).

Real vertical Imaginary vertical

wavelength wavelength
Mode (km) (km)
1st overtone 1.08 8.6
2nd overtone 0.561 8.24
3rd overtone 0.377 14.5
K-H 11.7 0.276

overtones, respectively. Thus, the allowed secondary
modes are those which can fit an integral number of
half-wavelengths into the layer between the shear zone
and the ground. This selectivity implies a resonant
effect, and the secondary modes will in the future be
termed resonant modes. In Section 4, the nature of the
resonance will be discussed and interpreted in terms of
over-reflection (Jones, 1968).

The growth rates of the resonant modes are shown as
functions of z;/k in Fig. 10. As z;/k increases, there
exist successive intervals over which the various over-
tones in turn have the largest growth rate. The height
of the shear layer above the ground therefore determines
which member of the resonant family is most likely
to become physically important.

We have seen in Fig. 8 that, for a given value of
%i/h, the range of wavenumbers and frequencies avail-
able to unstable resonant modes is very much smaller
than the corresponding range available to the K-H
modes. This fact can be understood by noting that
many of the parameters of the resonant modes become
fixed once the distance of the shear layer from the wall
has been specified. The depth of the isothermal, wind-
free layer between the bottom of the shear zone and the
ground is given approximately by

L=2z,—Az. a7
Into this distance we must fit /2 vertical wavelengths
¢, the value of # depending upon the specific overtone.
Thus, given z; and the particular overtone, /. is fixed.
Since /; is small in this layer, (11) implies that & is
approximately proportional to I,; thus % is also fixed.
The value of w. is then limited by the requirement that
there exist a critical level for the wave somewhere in
the flow.

The maximum growth rates for the first three reso-
nant modes are found from Fig. 10 to occur at z;/h=19,
35 and 51, respectively. From (17), the corresponding
depths of the isothermal, wind-free layers are 340, 660
and 980 m. These depths are, to a good approximation,
in the ratio 1:2:3. This implies that there is a single
vertical wavelength which leads to a maximum growth
rate for all resonant modes. This, in turn, indicates
that the vertical wavelength which will most efficiently
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smooth a shear layer of depth Az is given by
¢-=16.5 Az. (18)

Note that the numerical factor in (18) applies to the
specific background configuration defined by £=20 m,
a=0.8 K and 8=1, and will vary by up to 209, for
different background profiles.

Condition (18) is reminiscent of Eq. (16), which gave
the horizontal wavelength of the K-H mode which
was most efficient at smoothing a given shear layer.
However, the two equations must be interpreted
differently. Eq. (16) implies that, given a shear layer
of depth Az, there exist among the possible K-H dis-
turbances a particular mode with a wavelength which
will smooth the shear layer fastest. On the other hand,
(18) states that, for a given Az, there exists an optimum
resonant vertical wavelength for extracting energy, but
this wavelength will be realizable only if the shear
layer is located at a particular distance from the wall.
Using the. relation L=#n{,/2, the maximum growth
rate for the overtone of order » will occur when
L/Az~8.25xn.

We note from Fig. 10 that the values of z;/k at
which the growth rates of the first three resonant
modes drop to zero are 8.8, 16.1 and 24.4, respectively.
These values again lead to isothermal, wind-free layer
depths in the ratio 1:2:3. Therefore, no resonant in-
stabilities are possible if {,<7 Az, or if L/Az<3.5 n.
Again the numerical values given here should be
applied with caution.

An interesting feature of the neutral solutions corre-
sponding to resonant modes is seen in Fig. 11,
where the frequencies of the first three resonant modes
are plotted against their corresponding horizontal wave-
numbers for all values of z;/k. The points fall naturally
onto two straight lines which tend to curve toward
each other at small values of w, and k. The upper line
is formed of points from the lower branches of the
neutral curves of Fig. 8, and the lower line of points
from the upper branches. The points connecting the
two lines are points from the areas of Fig. 8 where the
neutral curves turn back on themselves. Each of these

.0006|

-0004

GROWTH RATE (se¢')

zi/h

F16. 10. Growth rates of the resonant modes as functions of
2:/h. Curves (a), (b) and (c) correspond to the first, second and
third overtone respectively. (#=20m, a=0.8K, g=1.)
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lines has an equation of the form

wr—sk=0b, . (19)

where s is the slope of the line and & its intercept on the
k axis. But (19) is simply a statement that the Doppler-
shifted frequency of a wave with frequency w, in a
fixed frame and with wavenumber £ is a constant b at a
level where the wind speed is s. The least square values
of s for the upper and lower lines respectively are 2.41
and 4.95 m s~.. These values are sufficiently close to
2.40 and 4.80 to conclude that all neutral resonant
solutions, regardless of their particular family member-
ship or of the distance of the shear layer from the wall,
have one of two Doppler-shifted frequencies, the fre-
quency relevant either at the inflection point height,
or in the upper half-space.

The growth rates of the various resonant modes
shown in Fig. 10 are all small, and in particular are
smaller than the K-H growth rates by a factor of 15
or more. However, it was found possible to improve the
resonant growth rates, in both an absolute and relative
sense, by varying the values of the background param-
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F1c. 12. Growth rate of the first resonant mode as a function of
8. The ordinate on the left applies to the solid curves while the
ordinate on the right applies to the dashed curve. (z:;/h=19,
h=20m, «a=0.8K.)
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Fic. 13. As in Fig. 12 except as a function of Ry,
(z:/h=19, a=0.8K, g=1.)

eters. The variation of the growth rates of the resonant
modes with 8, R, and R, are shown in Figs. 12, 13 and
14, respectively. These calculations were pursued only
for the first resonant mode for z;/A=19, where the
growth rate of this overtone is maximized. Both the
absolute resonant growth rates and the ratio of resonant
to K-H growth rates are shown in these figures.

Fig. 12 shows that the resonant growth rates are
enhanced, in both the absolute and the relative sense,
whenever the scale of the temperature gradient is
markedly different from the scale of the shear. In Fig.
13, the absolute resonant growth rates are seen to in-
crease as R, is decreased to 0.075, but the rapid in-
crease in the K-H growth rates at small R, means that
the relative rates decrease for R;<0.10.

Fig. 14 illustrates that decreased static stability

leads to generally higher resonant growth rates. This

is perhaps surprising in that the bouyant restoring
forces necessary for wave motion weaken as the
stability decreases.

Figs. 13 and 14 demonstrate that R must be signifi-
cantly less than 0.25 before resonant instabilities
appear. On the other hand, K-H disturbances are
found immediately as R drops below 0.25. Thus, the
Miles-Howard criterion appears to be a sufficient condi-
tion for K-H instability, but only a necessary condition
for resonant instability. This is in accord with the inter-
pretation of the resonant modes in terms of over-
reflection.
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F1G. 14. As in Fig. 12 except as a function of R,.
(3:/h=19, k=60 m, 8=1.)
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Fic. 15. Frequency (a) and horizontal wavenumber (b) of the
first neutral resonant mode as functions of R,: 2i/h=19, h=20 m,

g=1.

The largest growth rates in any of Figs. 12-14 occur
for small values of 8 and Ra, and correspond to e-folding
times of a little less than 40 min. This value could no
doubt be improved by considering a model in which
both g and R. were small. These growth rates are
sufficiently large that the resonant modes could become
physically important if the shear layer which was
responsible for their generation was maintained for a
period of 2 or 3 h.

¢. Resonant modes: Propagating modes

Almost all of the resonant modes discussed in the
previous section were strongly attenuated in the iso-
thermal, constant-wind region above the shear layer.
Exceptions to this rule are the modes generated by
the almost isentropic shear layers which obtain at
small R,. The neutral eigenvalues for these modes are
shown in Fig. 15. The real and imaginary parts of the
vertical wavenumbers of the modes lying in the lower
branch of these curves appear in Fig. 16a. For large
values of R., the disturbance is evanescent in the
upper half-space, as I, is zero here and }; non-zero.
However, for R.<0.03 the situation is reversed, and
the modes become free to propagate without attenua-
tion in the upper half-space.

The same behavior can be seen in Fig. 16b in the
growing modes. At large values of R., the rate of
attenuation in the upper half-space is so high that the
disturbance is extinguished long before it can undergo
a single oscillation. However, as R, decreases both the
vertical wavelength and the attenuation decrease until,
at R,=0.005, the wave can propagate over a full wave-
length before it is attenuated by a factor e. Since the
wavelength at this point is about 2.5 km, the wave
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Fic. 16. Real (dashed curve) and imaginary (solid curve)
vertical wavenumbers in the lower isothermal, wind-free layer
as functions of R,. The wavenumbers of the neutral modes
lying in the lower branch of Fig. 15 are shown in (a). The wave-
numbers of the fastest growing modes related to the neutral
curves of Fig. 15 are shown in (b). (z:;/k=19, k=20, §=1.)

can carry energy and momentum to considerable
heights above the shear zone.

The value of R, at which neutral modes become
propagating modes also appears to mark a change in the
relationship between the neutral and growing solutions.
For a given value of R. greater than 0.03, the two
neutral solutions are bounds for growing modes, and
the stability curve looks much like that of Fig. 3. How-
ever, for R,<0.03, the lower branch of the neutral
curve ceases to be the stability boundary for growing
modes. The stability curve for R,=0.025 is shown in
Fig. 17. The growing solutions no longer evolve into
the lower neutral solution, but are found on either
side of the neutral curve. In particular, the growing
solutions outside the neutral curve extend to very
small values of frequency and wavenumber, so that

.oo3}

GROWTH RATE (sec’)

Fic. 17. As in Fig. 3 except at R,=0.025.
(2i/h=19, k=20 m, a=0, 3=1.)
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the range of possible periods and wavelengths for
instability is vastly increased. The simultaneous appear-
ance of propagating solutions and non-contiguous
growing modes suggests that these two features might
always appear together. ]

It is possible that the non-contiguous growing solu-
tions are in fact bounded by a neutral curve which
branches off from the neutral curve shown in Fig. 15.
The situation would then be similar to that shown in
Fig. 1 of Blumen et al. (1975) for the case of supersonic
instabilities of a shear layer embedded in an inviscid,
compressible fluid free from gravitational stratification.
This figure shows that growing solutions extend over
one branch of the associated neutral curve, but are
bounded by a second branch of the same curve. In the
present case, a detailed search near R,=0.03, where
such a splitting would most obviously occur, failed to
reveal a secondary branch. We have not looked in any
detail for a branching at larger values of R..

The non-contiguous modes found in the present
study imply that theorem IV of Section 2 cannot be
extended to the flows considered here. The close rela-
tionship between the neutral and growing solutions
implied by this theorem is broken by the present asym-
metry in the boundary conditions.

4. Discussion and conclusions

We have shown in the previous sections that the
introduction of a rigid boundary below a stratified
parallel shear flow leads to modes of instability other
than the well-known K-H disturbance. We were able
to define the frequencies, wavelengths and growth rates
of these modes as functions of the parameters of the
background flow, and to deduce their behavior above
and below the region of shear. However, there remain
a number of questions which cannot be answered in
the framework of linear theory. These will be dis-
cussed qualitatively below. A ‘quantitative analysis
will have to await the solution of the associated initial
value problem. This is a subject of current study.

The first question concerns the nature of the reso-
nance which is responsible for the existence and struc-
ture of the resonant modes. Since the conditions under
which the initial generation of the instability occurs are
similar to those studied by Lindzen (1974) we expect
the original perturbation to appear as a neutral wave.
This wave propagates downward and reflects from the

-ground, and must interact in some manner with its
critical level when it returns to the shear layer. The
most likely form of such interaction is over-reflection
(Jones, 1968), the physical manifestation of which is
seen in the non-zero growth rates of the resonant
modes. The ground is therefore responsible, not for the
existence of the wavelike modes, but for the non-zero
values of their growth rates, as was conjectured by
Lindzen (1974). The ground is also certainly responsible
for the standing wave pattern of their eigenfunctions.
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In the case of the nearly isentropic shear layer, in
which the perturbation radiates upward from the shear
zone as well as downward, there are two possibilities.
The upward wave may be emitted at the moment of
generation of the instability, or the wave reflected
from the ground may be partially transmitted on its
return to the critical level. In the latter case, the weak-
ened resonant interaction at the critical level may
explain the falloff in growth rate at small R, observed
in Fig. 14.

A second question involves the mechanism by which
the trapped resonant modes may serve to smooth the
background shear. In the usual case of propagating
disturbances, excess energy in the mean flow is used to
generate the wave, which then carries this energy far
from the region of shear to deposit it wherever the
wave is re-absorbed by the mean flow. However, in
the case of the resonant modes, the energy and mo-
mentum carried away from the shear layer by the down-
going wave are continuously distributed in the growing
standing wave. When this standing wave breaks the
attendant redistribution of momentum may be highly
anisotropic. We have shown in the previous section
that the resonant modes do in fact grow slowly so
that given sufficient time the boundary layer momen-
tum profile will be significantly modified by their
existence.

A simplified picture of the breakdown process itself
may be as follows. Between the bottom of the shear
layer and the ground, the vertical structure of the
perturbation horizontal velocity is much the same as
that of the perturbation vertical velocity as shown in
Fig. 9, except that levels where maxima in |w’| occur
are now levels where minima in |#’| occur, and vice
versa. The largest shears in this region will therefore
exist at heights halfway between these maxima and
minima. As the waves grow these shears may become
large ‘enough to force the Richardson number below
0.25, and small-scale K-H disturbances will develop.
These disturbances will in turn grow and break, re-
sulting in thin bands of turbulence along the nodal
lines. Because of the symmetry in the eigenfunction
pattern, these turbulent layers will be coherent and
equally spaced in the vertical.

The similarity between these conclusions and the
radar records suggests that resonant modes are re-
sponsible for the formation of the multiple thin layers
commonly observed in the boundary layer. Unfortu-
nately, to the authors’ knowledge there have been no
studies published in which both atmospheric soundings
and measurements of the wave parameters have ac-
companied radar observations of multiple layer events.
The results obtained above cannot, therefore, be com-
pared quantitatively with specific observations. How-
ever, qualitative agreement is found with at least one
feature of the.results of Beran et al. (1973) who ob-
tained wave parameters from microbarograph observa-
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F1c. 18. Sounder record (Fig. 8 of Beran et al., 1973) showing several examples of multiple thin wavy layers. The white line super-
imposed on the record is the pressure trace from a microbarograph located roughly 800 m from the sounder. The wave parameters
deduced from the microbarograph observations are indicated in Table 1.

tions during a series of multiple layer events. Fig. 18isa
reproduction of Fig. 8 of Beran ef al., and shows the
microbarograph and sounder records of interest. We
will assume, in the absence of actual soundings, that
the disturbed region in Fig. 18 is capped by an inversion
with embedded shear. According to the present model
the vertical wavelength of a given overtone should de-
crease as the depth of the disturbed layer decreases.
Eq. (11) then predicts that the horizontal wavelength
will also decrease. The observations show, in fact, that
a decrease in the depth of the disturbed layer in time
is accompanied by a decrease in the horizontal wave-
length of the observed waves.

The final point to be discussed concerns the possible
ways in which the disturbance field might evolve when
the two modes of instability, K-H and resonant, com-
pete for the energy available in the mean flow. At first
glance it would seem that the K-H modes would grow
so quickly that they would smooth the background
shear before the resonant modes could be significantly
amplified. However, the problem is more subtle than
this and several additional factors need to be considered.

1) Most multiple layer events are observed in marine
(Gossard et al., 1971) or arctic (Beran et al., 1973, Fig. 3)
inversions, both of which are maintained by radiative
effects and are therefore quite persistent. The multiple
layers themselves are fairly long-lived events, often

lasting for an hour or more. Both of these points suggest
that the time required for the resonant modes to grow
to maturity is in fact available to them.

2) The breakdown of the resonant modes may be
accelerated by the formation of large gradients in the
perturbation velocity in a process similar to that de-
scribed by Teitelbaum and Sidi (1975). These re-
searchers studied gravity wave propagation in the
upper atmosphere over distances large enough that
the vertical decrease in density led to significant in-
creases in the wave amplitude. They found that dis-
continuities in the wave field appeared quickly whenever
two or more such waves interacted. In the boundary
layer, the growth of wave amplitude with height would
be replaced by the growth in time which the resonant
modes have been shown to undergo. Even though this
growth takes place relatively slowly, the interaction
between the upgoing and downgoing waves reduces
the time required for discontinuities in the wave fields
to occur. The horizontal discontinuities in velocity thus
produced will quickly enhance the large shears which
already exist at the nodal points of the standing waves,
and breakdown will follow rapidly. Observational
evidence that the interaction between an upgoing and
a downgoing wave can lead to enhanced instability is
found in Fig. 18 of Gossard et al. (1971).

3) The propagating resonant modes generated by
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isentropic shear flows can carry energy and momentum
away from the shear zone even if their growth rates
are small. The true importance of these modes may
therefore be underestimated by their small growth rates.

4) The growth rates of both the K-H and resonant
modes were found to vary considerably with the
paraieters of the background flow. It may be possible
to find combinations of the parameters which lead to a
relative enhancement of the resonant modes. Observa-
tional profiles of wind speed and temperature during
a multiple layer event would help to.identify such
combinations.

5) The above results were obtained for a linear, in-
viscid model. In the real atmosphere, viscosity would
likely reduce the growth rates of both the K-H and
resonant modes. However, the effects would be more
pronounced on the K-H disturbances, in which large
shears are confined to a small volume. The resonant
growth rates would then be enhanced in a relative sense.

If one or more of the above points is applicable to
the real atmosphere, the resonant modes may be able
to compete successfully with the faster growing K-H
disturbances for the shear energy. As we have already
pointed out, the indication from acoustic radar observa-
tions is that this is indeed the case.

We conclude with a brief summary. We have shown
that a parallel shear flow above a rigid boundary is
unstable to perturbations which have the character of
internal gravity waves. In cases of strong static sta-
bility these disturbances are trapped between their
critical level and the ground. The eigenfunction struc-
ture of these modes suggests an explanation for the
multiple thin wavy scattering layers commonly ob-
served in the stable boundary layer. For nearly isen-
tropic shear layers, the resonant modes are no longer
trapped, but are able to carry energy and momentum
to considerable distances above the shear zone. We
are presently attempting to answer questions concern-
ing the nonlinear development of these waves by
solving the associated initial value problem.
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